Chapter 04 Review Problems
Create a Custom PDF Worksheet
Select the problems you want to include.
The Mole and Molar Mass
Which sample contains the most particles?
- 1 mol H2O(g)
- 1 mol UF6(g)
- 1 mol CH3COOH(l)
- 1 mol He(g)
- all contain the same number of particles
Solution
Answer: E
Concept: number of entities; moles
Since there is 1 mole of each sample, each sample contains an Avogadro number (6.022… × 1023) of particles.
Which sample contains the most atoms?
- 1 mol CO2(g)
- 1 mol UF6(g)
- 1 mol CH3COCH3(l)
- 1 mol He(g)
- all contain the same number of particles
Solution
Answer: C
Concept: moles; atomic composition
To find the total number of atoms in each sample, we must multiply the number of moles of the substance by the number of atoms in each molecule or formula unit. Since all samples are 1 mol, the sample with the most atoms per molecule will contain the most total atoms. Let n(atoms) represent the total moles of atoms.
1 mol H2O: \[ \begin{align*} n(\mathrm{atoms}) &= n(\mathrm{H_2O}) ~ r(\mathrm{atoms,H_2O}) \\[1.5ex] &= \left( 1~\mathrm{mol~H_2O} \right) \left( \frac{3~\mathrm{mol~atoms}}{1~\mathrm{mol~H_2O}} \right) \\[1.5ex] &= 3~\mathrm{mol~atoms} \end{align*} \]
1 mol UF6: \[ \begin{align*} n(\mathrm{atoms}) &= n(\mathrm{UF_6}) ~ r(\mathrm{atoms,UF_6}) \\[1.5ex] &= \left( 1~\mathrm{mol~UF_6} \right) \left( \frac{7~\mathrm{mol~atoms}}{1~\mathrm{mol~UF_6}} \right) \\[1.5ex] &= 7~\mathrm{mol~atoms} \end{align*} \]
1 mol CH3COCH3: \[ \begin{align*} n(\mathrm{atoms}) &= n(\mathrm{CH_3COCH_3}) ~ r(\mathrm{atoms,CH_3COCH_3}) \\[1.5ex] &= \left( 1~\mathrm{mol~CH_3COCH_3} \right) \left( \frac{10~\mathrm{mol~atoms}}{1~\mathrm{mol~CH_3COCH_3}} \right) \\[1.5ex] &= 10~\mathrm{mol~atoms} \end{align*} \]
1 mol He: \[ \begin{align*} n(\mathrm{atoms}) &= n(\mathrm{He}) ~ r(\mathrm{atoms,He}) \\[1.5ex] &= \left ( 1~\mathrm{mol~He} \right ) \left( \frac{1~\mathrm{mol~atom}}{1~\mathrm{mol~He}} \right) \\[1.5ex] &= 1~\mathrm{mol~atoms} \end{align*} \]
Comparing the results, the 1 mole sample of acetone (CH3COCH3) contains the most moles of atoms, and therefore the most total atoms.
How many atoms (in normalized scientific notation) are present in a 0.268 mol sample of CH3OH?
Solution
Answer: 9.68 × 1023 atoms
Concept: number of particles; moles
Every molecule of CH3OH contains 6 atoms; therefore, every 1 mol of CH3OH contains 6 mol of atoms.
\[ \begin{align*} N(\mathrm{atoms}) &= n(\mathrm{atoms}) ~ N_{\mathrm{A}} \\[1.5ex] &= n(\mathrm{CH_3OH}) ~ r(\mathrm{atoms,CH_3OH}) ~ N_{\mathrm{A}} \\[1.5ex] &= 0.26\bar{8}~\mathrm{mol~CH_3OH} \left ( \dfrac{6~\mathrm{mol~atoms}}{\mathrm{mol~CH_3OH}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}~\mathrm{atoms}}{\mathrm{mol~atoms}} \right ) \\[1.5ex] &= 9.6\bar{8}33\times 10^{23} \\[1.5ex] &= 9.68\times 10^{23} \end{align*} \]
Which one of the samples has the largest mass?
- 1 mol CO2(g)
- 1 mol UF6(g)
- 1 mol CH3COOH(l)
- 1 mol He(g)
- all contain the same number of particles
Solution
Answer: B
Concept: moles; molar mass
The mass of one mole of any substance is its molar mass (M), which is calculated by summing the atomic masses of all atoms in its chemical formula. To find the sample with the largest mass, we need to find the substance with the largest molar mass.
Let’s calculate the approximate molar mass for each substance:
- CO2: 1(12.01) + 2(16.00) = 44.01 g mol−1
- UF6: 1(238.03) + 6(19.00) = 352.03 g mol−1
- CH3COOH: 2(12.01) + 4(1.01) + 2(16.00) = 60.06 g mol−1
- He: 4.00 g mol−1
- This answer option does not answer the question.
Comparing the approximate molar masses, UF6 is by far the most massive. Therefore, one mole of UF6 has the largest mass.
How many aluminum atoms are there in a 3.50 g sample of Al2O3?
Solution
Answer: 4.13 × 1022 atoms
Concept: number of particles; moles
The molar mass of Al2O3 is 101.9 g mol−1.
\[ \begin{align*} N(\mathrm{Al}) &= n(\mathrm{Al}) ~ N_{\mathrm{A}} \\[1.5ex] &= n(\mathrm{Al_2O_3}) ~ r(\mathrm{Al,Al_2O_3}) ~ N_{\mathrm{A}} \\[1.5ex] &= m(\mathrm{Al_2O_3}) ~ M(\mathrm{Al_2O_3})^{-1} ~ r(\mathrm{Al,Al_2O_3}) ~ N_{\mathrm{A}} \\[1.5ex] &= 3.5\bar{0}~\mathrm{g~Al_2O_3} \left ( \dfrac{\mathrm{mol~Al_2O_3}}{101.9\bar{6}~\mathrm{g}} \right ) \left ( \dfrac{2~\mathrm{mol~Al}}{\mathrm{mol~Al_2O_3}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}~\mathrm{Al}}{\mathrm{mol~Al}} \right ) \\[1.5ex] &= 4.1\bar{3}43\times 10^{22} \\[1.5ex] &= 4.13\times 10^{22} \end{align*} \]
What is the mass (in g) of 3.6 × 1022 chlorine atoms?
Solution
Answer: 2.1 g
Concept: the mole; the Avogadro constant
To find the mass, we must first convert the number of atoms (N) to the amount in moles (n) using Avogadro’s constant (NA). Then, we convert from moles to mass using the molar mass (M).
\[ \begin{align*} m(\mathrm{Cl}) &= n(\mathrm{Cl}) ~ M(\mathrm{Cl})\\[1.5ex] &= N(\mathrm{Cl}) ~ N_{\mathrm{A}}{^{-1}} ~ M(\mathrm{Cl}) \\[1.5ex] &= 3.\bar{6}\times 10^{22}~\mathrm{Cl} ~ \left ( \dfrac{\mathrm{mol}}{6.02\bar{2}\times 10^{23}~\mathrm{Cl}} \right ) \left ( \dfrac{35.4\bar{5}~\mathrm{g}}{\mathrm{mol}} \right ) \\[1.5ex] &= 2.\bar{1}16~\mathrm{g} \\[1.5ex] &= 2.1~\mathrm{g} \end{align*} \]
How many iron atoms (in normalized scientific notation) are contained in 354 g of iron?
Solution
Answer: 3.82 × 1024 atoms
Concept: moles; the Avogadro constant
\[ \begin{align*} N(\mathrm{Fe}) &= n(\mathrm{Fe}) ~ M(\mathrm{Fe}) \\[1.5ex] &= m(\mathrm{Fe}) ~ M(\mathrm{Fe})^{-1} ~ N_{\mathrm{A}} \\[1.5ex] &= 35\bar{4}~\mathrm{g} ~ \left ( \dfrac{\mathrm{mol}}{55.8\bar{5}~\mathrm{g}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}~\mathrm{Fe}}{\mathrm{mol}} \right ) \\[1.5ex] &= 3.8\bar{1}69 \times 10^{24}~\mathrm{Fe}\\[1.5ex] &= 3.82\times 10^{24}~\mathrm{Fe} \end{align*} \]
What is the molar mass (in g mol–1) of Al2(SO4)3 · 18 H2O?
Solution
Answer: 666.50 g mol–1
Concept: molar mass
\[ \begin{align*} M(\mathrm{Al_2(SO_4)_3 \boldsymbol{\cdot} 18~H_2O}) &= M_{\mathrm{r}} ~ [\mathrm{Al_2(SO_4)_3 \boldsymbol{\cdot} 18~H_2O}] ~ M_{\mathrm{u}} \\[1.5ex] &= [ 2~A_{\mathrm{r}}{^{\circ}}(\mathrm{Al}) + 3~A_{\mathrm{r}}{^{\circ}}(\mathrm{S}) + 30~A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) + 36~A_{\mathrm{r}}{^{\circ}}(\mathrm{H}) ] ~ M_{\mathrm{u}} \\[1.5ex] &= [ 2 \left ( 26.9\bar{8} \right ) + 3 \left ( 32.0\bar{6} \right ) + 30 \left ( 16.0\bar{0} \right ) + 36 \left ( 1.0\bar{1} \right ) ] \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \\[1.5ex] &= [ 53.9\bar{6}0 + 96.1\bar{8}0 + 480.0\bar{0}0 + 36.3\bar{6}0 ] \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \\[1.5ex] &= 666.5\bar{0}0~\mathrm{g~mol^{-1}} \\[1.5ex] &= 666.50~\mathrm{g~mol^{-1}} \end{align*} \]
What is the molar mass (in g mmol–1) of (NH4)2HPO4?
Solution
Answer: 0.13208 g mmol–1
Concept: molar mass
\[ \begin{align*} M[\mathrm{(NH_4)_2HPO_4}] &= M_{\mathrm{r}}[\mathrm{(NH_4)_2HPO_4}] ~ M_{\mathrm{u}} \\[1.5ex] &= [ 2~A_{\mathrm{r}}{^{\circ}}(\mathrm{N}) + 9~A_{\mathrm{r}}{^{\circ}}(\mathrm{H}) + A_{\mathrm{r}}{^{\circ}}(\mathrm{P}) + 4~A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) ] ~ M_{\mathrm{u}} \\[1.5ex] &= [ 2 \left ( 14.0\bar{1} \right ) + 9 \left ( 1.0\bar{1} \right ) + \left ( 30.9\bar{7} \right ) + 4 \left ( 16.0\bar{0} \right ) ] \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \left ( \dfrac{\mathrm{mol}}{10^3~\mathrm{mmol}} \right ) \\[1.5ex] &= [ 28.0\bar{2}0 + 9.0\bar{9}0 + 30.9\bar{7}0 + 64.0\bar{0}0 ] \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \left ( \dfrac{\mathrm{mol}}{10^3~\mathrm{mmol}} \right )\\[1.5ex] &= 132.0\bar{8}0 \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \left ( \dfrac{\mathrm{mol}}{10^3~\mathrm{mmol}} \right )\\[1.5ex] &= 0.1320\bar{8}0~\mathrm{g~mmol^{-1}} \\[1.5ex] &= 0.13208~\mathrm{g~mmol^{-1}} \end{align*} \]
What is the mass (in ng as normalized scientific notation) of 2.44 × 1020 oxygen atoms?
Solution
Answer: 6.48 × 106 ng
Concept: moles; the Avogadro constant
\[ \begin{align*} m(\mathrm{O}) &= n(\mathrm{O}) ~ M(\mathrm{O}) \\[1.5ex] &= N(\mathrm{O}) ~ N_{\mathrm{A}}^{-1} ~ M(\mathrm{O}) \\[1.5ex] &= 2.4\bar{4}\times 10^{20}~\mathrm{O} ~ \left ( \dfrac{\mathrm{mol}}{6.02\bar{2}\times 10^{23}~\mathrm{O}} \right ) \left ( \dfrac{16.0\bar{0}~\mathrm{g}}{\mathrm{mol}} \right ) \left ( \dfrac{10^9~\mathrm{ng}}{\mathrm{g}} \right ) \\[1.5ex] &= 6.4\bar{8}28\times 10^{6}~\mathrm{ng} \\[1.5ex] &= 6.48\times 10^{6}~\mathrm{ng} \end{align*} \]
A sample of a compound containing only carbon and oxygen decomposes and produces 24.5 g of carbon and 32.59 g of oxygen. What is the sample?
- CO
- CO2
- CO3
- C3O2
- C2O
Solution
Answer: A
Concept: Law of Definite Proportions; empirical formula; percent by mass; mole ratio
The most direct way to identify the compound is to determine its empirical formula from the experimental masses. The empirical formula represents the simplest whole-number ratio of moles of each element in the compound.
Step 1: Convert the Mass of Each Element to Moles \[ \begin{align*} n(\mathrm{C}) &= m(\mathrm{C}) ~ M(\mathrm{C})^{-1} \\[1.5ex] &= \left( 24.\bar{5}~\mathrm{g~C} \right) \left( \frac{1~\mathrm{mol~C}}{12.0\bar{1}~\mathrm{g~C}} \right) \\[1.5ex] &= 2.0\bar{3}99~\mathrm{mol~C} \\[2ex] n(\mathrm{O}) &= m(\mathrm{O}) ~ M(\mathrm{O})^{-1} \\[1.5ex] &= \left( 32.5\bar{9}~\mathrm{g~O} \right) \left( \frac{1~\mathrm{mol~O}}{16.0\bar{0}~\mathrm{g~O}} \right) \\[1.5ex] &= 2.03\bar{1}25~\mathrm{mol~O} \end{align*} \]
Step 2: Find the Simplest Whole-Number Ratio
Divide the mole amount of each element by the smallest mole amount (2.03\[ \begin{align*} \text{C Ratio} &= \frac{2.0\bar{3}99~\mathrm{mol}}{2.03\bar{1}25~\mathrm{mol}} \\[1.5ex] &= 1.0\bar{0}42 \\[1.5ex] &\approx 1 \\[1.5ex] \text{O Ratio} &= \frac{2.03\bar{1}25~\mathrm{mol}}{2.03\bar{1}25~\mathrm{mol}} \\[1.5ex] &= 1.00\bar{0}0 \\[1.5ex] &= 1 \end{align*} \] The mole ratio of C to O is 1:1. The empirical formula of the compound is CO.
25 mol) to find the ratio.An Intuitive Approach (without full calculation)
You are correct that you can often narrow down the choices without performing the full calculation.
- Estimate the Mass Ratio: The problem gives
24.5 g C
and32.59 g O
. These masses are roughly in a 24:32 ratio, which simplifies to 3:4. - Estimate the Molar Mass Ratio: The molar mass of Carbon is ~12 g mol−1, and Oxygen is ~16 g mol−1. This is also a 12:16 or 3:4 ratio.
- Compare Ratios: Since the ratio of the masses in the sample is approximately the same as the ratio of the molar masses of the individual atoms, it strongly implies that the atoms are present in a 1-to-1 mole ratio. The only formula that fits this is CO.
The other options would have very different mass ratios. For example, in CO2, you would expect the mass of oxygen to be significantly more than double the mass of carbon.
Alternative Method: Comparing Mass Percentages
Another, less direct way to solve the problem is to find the mass percent of each element in the sample and then compare it to the theoretical mass percent of each possible compound.
Total mass of compuond:
\[ \begin{align*} m(\mathrm{sample}) &= 24.\bar{5}~\mathrm{g} + 32.5\bar{9}~\mathrm{g} = 57.\bar{0}9~\mathrm{g} \end{align*} \]
Mass percent of C and O in sample:
\[ \begin{align*} w(\mathrm{C})~\% &= w(\mathrm{C}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{m(\textrm{C})}{m(\mathrm{sample})} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{24.\bar{5}~\mathrm{g}}{57.\bar{0}9~\mathrm{g}} \right ) \times 100~\% \\[1.5ex] &= 42.\bar{9}14~\% \\[3ex] w(\mathrm{O})~\% &= w(\mathrm{O}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{m(\textrm{O})}{m(\mathrm{sample})} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{32.5\bar{9}~\mathrm{g}}{57.\bar{0}9~\mathrm{g}} \right ) \times 100~\% \\[1.5ex] &= 57.\bar{0}85~\% \end{align*} \]
Mass percent of C and O in CO:
\[ \begin{align*} w(\mathrm{C})~\% &= w(\mathrm{C}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{A_{\textrm{r}}^{\circ}(\textrm{C})} {M_{\mathrm{r}}(\textrm{CO})} \right ) \times 100~\% \\[1.5ex] &= \left (\dfrac{A_{\textrm{r}}^{\circ}(\textrm{C})} { \left [ A_{\textrm{r}}^{\circ}(\textrm{C}) + A_{\textrm{r}}^{\circ}(\textrm{O}) \right ] } \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{12.0\bar{1}} {\left ( 12.0\bar{1} + 16.0\bar{0} \right )} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{12.0\bar{1}}{28.0\bar{1}} \right ) \times 100~\% \\[3ex] &= 42.8\bar{7}75~\% \\[3ex] w(\mathrm{O})~\% &= w(\mathrm{O}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{A_{\textrm{r}}^{\circ}(\textrm{O})} {M_{\mathrm{r}}(\textrm{CO})} \right ) \times 100~\% \\[1.5ex] &= \left (\dfrac{A_{\textrm{r}}^{\circ}(\textrm{O})} { \left [ A_{\textrm{r}}^{\circ}(\textrm{C}) + A_{\textrm{r}}^{\circ}(\textrm{O}) \right ] } \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{16.0\bar{0}} {\left ( 12.0\bar{1} + 16.0\bar{0} \right )} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{16.0\bar{0}}{28.0\bar{1}} \right ) \times 100~\% \\[1.5ex] &= 57.1\bar{2}24~\%\\[3ex] \end{align*} \]
The mass percent of C and O in the sample closely match the mass percent of C and O in CO. The other options give significantly different mass percent compositions. While this method works, it can be more time-consuming than the direct empirical formula calculation if the first guess is not correct.
How many moles (in normalized scientific notation) of Cs are contained in 595 kg of Cs?
Solution
Answer: 4.48 × 103 mol
Concept: moles
\[ \begin{align*} n(\mathrm{Cs}) &= m(\mathrm{Cs}) ~ M(\mathrm{Cs})^{-1} \\[1.5ex] &= m(\mathrm{Cs}) ~ \left [ A_{\mathrm{r}}{^{\circ}}(\mathrm{Cs}) ~ M_{\mathrm{u}} \right ]^{-1} \\[1.5ex] &= 59\bar{5}~\mathrm{kg} \left ( \dfrac{10^3~\mathrm{g}}{\mathrm{kg}} \right ) \left [ \left ( 132.9\bar{1} \right ) \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \right ]^{-1} \\[1.5ex] &= 44\bar{7}6.7~\mathrm{mol} \\[1.5ex] &= 4.48\times 10^{3}~\mathrm{mol} \end{align*} \]
What is the mass (in g as normalized scientific notation) of 2.2 × 1024 mercury atoms?
Solution
Answer: 7.3 × 102 g
Concept: moles; the Avogadro constant
\[ \begin{align*} m(\mathrm{Hg}) &= n(\mathrm{Hg}) ~ M(\mathrm{Hg}) \\[1.5ex] &= N(\mathrm{Hg}) ~ N_{\mathrm{A}}{^{-1}} ~ M(\mathrm{Hg}) \\[1.5ex] &= 2.\bar{2}\times 10^{24}~\mathrm{Hg} ~ \left ( \dfrac{\mathrm{mol}}{6.02\bar{2}\times 10^{23}~\mathrm{Hg}} \right ) \left ( \dfrac{200.5\bar{9}~\mathrm{g}}{\mathrm{mol}} \right )\\[1.5ex] &= 7.\bar{3}28\times 10^{2}~\mathrm{g} \\[1.5ex] &= 7.3\times 10^{2}~\mathrm{g} \end{align*} \]
How much Fe (in mol and number of atoms, the latter as scientific notation) are in 225.0 g of Fe?
Solution
Answer: 4.029 mol; 2.426 × 1024 atoms
Concept: moles; the Avogadro constant
\[ \begin{align*} n(\mathrm{Fe}) &= m(\mathrm{Fe}) ~ M(\mathrm{Fe})^{-1} \\[1.5ex] &= 225.\bar{0}~\mathrm{g} \left ( \dfrac{\mathrm{mol}}{55.8\bar{5}~\mathrm{g}} \right ) \\[1.5ex] &= 4.02\bar{8}64~\mathrm{mol} \\[1.5ex] &= 4.029~\mathrm{mol}\\[2.0ex] N(\mathrm{Fe}) &= n(\mathrm{Fe}) ~ N_{\mathrm{A}} \\[1.5ex] &= 4.02\bar{8}64~\mathrm{mol} \left ( \dfrac{6.02\bar{2}\times 10^{23}~\mathrm{Fe}} {\mathrm{mol}} \right ) \\[1.5ex] &= 2.42\bar{6}04\times 10^{24} \\[1.5ex] &= 2.426\times 10^{24} \end{align*} \]
Freon-12 (CCl2F2), a gas that has an alarming ozone depletion potential, was commonly used as a refrigerant in household air conditioners. A typical 3-ton AC unit requires around 6–12 lbs. of freon-12. Determine the following:
- the number of freon-12 molecules (in normalized scientific notation) in 5.44 kg (12 lbs.) of freon-12
- the mass (in kg) of Cl in a 5.44 kg sample of freon-12?
Solution
Answer: 2.71 × 1025 molecules; 3.19 kg
Concept: moles; the Avogadro constant
- Find the number of CCl2F2 molecules in a 5.44 kg sample.
\[ \begin{align*} N(\mathrm{CCl_2F_2}) &= n(\mathrm{CCl_2F_2}) ~ N_{\mathrm{A}} \\[1.5ex] &= m(\mathrm{CCl_2F_2}) ~ M(\mathrm{CCl_2F_2})^{-1} ~ N_{\mathrm{A}} \\[1.5ex] &= 5.4\bar{4}~\mathrm{kg} ~ \left ( \dfrac{10^3~\mathrm{g}}{\mathrm{mg}} \right ) \left ( \dfrac{\mathrm{mol}}{120.9\bar{1}~\mathrm{g}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}}{\mathrm{mol}} \right ) \\[1.5ex] &= 2.7\bar{0}94 \times 10^{25}~\mathrm{CCl_2F_2} \\[1.5ex] &= 2.71\times 10^{25}~\mathrm{CCl_2F_2} \end{align*} \]
- Find the mass of Cl atoms in a 5.44 kg sample of CCl2F2.
\[ \begin{align*} m(\mathrm{Cl}) &= n(\mathrm{Cl}) ~ M(\mathrm{Cl}) \\[1.5ex] &= n(\mathrm{CCl_2F_2}) ~ r(\mathrm{Cl,CCl_2F_2}) ~ M(\mathrm{Cl}) \\[1.5ex] &= N(\mathrm{CCl_2F_2}) ~ N_{\mathrm{A}}{^{-1}} ~ r(\mathrm{Cl,CCl_2F_2}) ~ M(\mathrm{Cl}) \\[1.5ex] &= 2.7\bar{0}94 \times 10^{25}~\mathrm{CCl_2F_2} ~ \left ( \dfrac{\mathrm{mol}}{6.02\bar{2}\times 10^{23}~\mathrm{Cl}} \right ) \left ( \dfrac{2~\mathrm{mol~Cl}}{1~\mathrm{mol~CCl_2F_2}} \right ) \left ( \dfrac{35.4\bar{5}~\mathrm{g}}{\mathrm{mol}} \right ) \left ( \dfrac{\mathrm{kg}}{10^3~\mathrm{g}} \right ) \\[2.0ex] &= 3.1\bar{8}99~\mathrm{kg} \\[1.5ex] &= 3.19~\mathrm{kg} \end{align*} \]
Prevacid (C16H14F3N3O2S) is used to treat gastroesophageal reflux disease (GERD). Determine each of the following:
- the molar mass (in g mol–1) of Prevacid
- the mass (in g) of fluorine in a 0.85 mol sample of Prevacid
- the number of C atoms (in normalized scientific notation) in a 0.85 mol sample of Prevacid
- the mass (in g) of 5.25 × 1021 molecules of Prevacid
Solution
Answer:
- 369.39 g mol–1
- 49 g
- 8.2 × 1024
- 3.22 g
Concept: moles, molar mass, and the Avogadro constant
A. Molar mass of Prevacid
\[ \begin{align*} M(\mathrm{Prevacid}) &= M_{\mathrm{r}}(\mathrm{Prevacid}) ~ M_{\mathrm{u}} \\[1.5ex] &= \Biggl\{ \left [ 16~A_{\mathrm{r}}{^{\circ}}(\mathrm{C}) \right ] + \left [ 14~A_{\mathrm{r}}{^{\circ}}(\mathrm{H}) \right ] + \left [ 3~A_{\mathrm{r}}{^{\circ}}(\mathrm{F}) \right ] + \left [ 3~A_{\mathrm{r}}{^{\circ}}(\mathrm{N}) \right ] + \left [ 2~A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) \right ] + A_{\mathrm{r}}{^{\circ}}(\mathrm{S}) \Biggl\} ~ M_{\mathrm{u}} \\[1.5ex] &= \Biggl\{ \left [ 16 \times 12.0\bar{1} \right ] + \left [ 14 \times 1.0\bar{1} \right ] + \left [ 3 \times 19.0\bar{0} \right ] + \left [ 3 \times 14.0\bar{1} \right ] + \left [ 2 \times 16.0\bar{0} \right ] + 32.0\bar{6} \Biggl\} ~ \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \\[1.5ex] &= 369.3\bar{9}0~\mathrm{g~mol^{-1}} \\[1.5ex] &= 369.39~\mathrm{g~mol^{-1}} \end{align*} \]
B. Mass (in g) of F in 0.75 mol Prevacid
\[ \begin{align*} m(\mathrm{F}) &= n(\mathrm{F}) ~ M(\mathrm{F}) \\[1.5ex] &= n(\mathrm{Prevacid}) ~ r(\mathrm{F,Prevacid}) ~ M(\mathrm{F}) \\[1.5ex] &= 0.8\bar{5}~\mathrm{mol~Prevacid} \left ( \dfrac{3~\mathrm{mol~F}}{\mathrm{mol~Prevacid}} \right ) \left ( \dfrac{19.0\bar{0}~\mathrm{g}}{\mathrm{mol~F}} \right ) \\[1.5ex] &= 4\bar{8}.85~\mathrm{g} \\[1.5ex] &= 49~\mathrm{g} \end{align*} \]
C. Number of C atoms in 0.85 mol Prevacid
\[ \begin{align*} N(\mathrm{C}) &= n(\mathrm{C}) ~ N_{\mathrm{A}} \\[1.5ex] &= n(\mathrm{Prevacid}) ~ r(\textrm{C,Prevacid}) ~ N_{\mathrm{A}} \\[1.5ex] &= 0.8\bar{5}~\mathrm{mol~Prevacid} ~ \left ( \dfrac{16~\mathrm{mol~C}}{\mathrm{mol~Prevacid}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}~\mathrm{C}}{\mathrm{mol}} \right ) \\[1.5ex] &= 8.\bar{1}89\times 10^{24} \\[1.5ex] &= 8.2\times 10^{24}~\mathrm{C}\\[3ex] \end{align*} \]
D. Mass (in g) of 5.25 × 1021 molecules of Prevacid
\[ \begin{align*} m(\mathrm{Prevacid}) &= n(\mathrm{Prevacid}) ~ M(\mathrm{Prevacid}) \\[1.5ex] &= N(\mathrm{Prevacid}) ~ N_{\mathrm{A}}^{-1} ~ M(\mathrm{Prevacid}) \\[1.5ex] &= 5.2\bar{5}\times 10^{21}~\mathrm{Prevacid} ~ \left ( \dfrac{\mathrm{mol}}{6.02\bar{2}\times 10^{23}~\mathrm{Prevacid}} \right ) \left ( \dfrac{369.3\bar{9}~\mathrm{g}}{\mathrm{mol}} \right ) \\[1.5ex] &= 3.2\bar{2}03~\mathrm{g~Prevacid} \\[1.5ex] &= 3.22~\mathrm{g~Prevacid} \end{align*} \]
Percent Composition, Percent Abundance
Guanidine, HNC(NH2)2, is a fertilizer. What is the percent by mass of nitrogen in the fertilizer?
Solution
Answer: 71.1 %
Concept: percent composition by mass
\[ \begin{align*} w(\mathrm{N})~\% &= w(\mathrm{N}) \times 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{3~ A_{\mathrm{r}}{^{\circ}}(\mathrm{N})} {M_{\mathrm{r}}(\mathrm{HNC(NH_2)_2})} \Biggl\} ~ \times ~ 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{3~A_{\mathrm{r}}{^{\circ}}(\mathrm{N})} { \left [ 5~A_{\mathrm{r}}{^{\circ}}(\mathrm{H}) + 3~A_{\mathrm{r}}{^{\circ}}(\mathrm{N}) + A_{\mathrm{r}}{^{\circ}}(\mathrm{C}) \right ] } \Biggl\} ~ \times ~ 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{3 \left(14.0\bar{1} \right)} { \left [ \left ( 5\times 1.0\bar{1} \right ) + \left ( 3\times 14.0\bar{1} \right ) + 12.0\bar{1} \right ] } \Biggl\} ~ \times ~ 100~\% \\[1.5ex] &= \left ( \dfrac{42.0\bar{3}}{59.\bar{0}9} \right ) \times 100~\% \\[1.5ex] &= 71.\bar{1}28~\% \\[1.5ex] &= 71.1~\% \end{align*} \]
Determine the percent by mass of Mg in chlorophyll (C55H72MgN4O5), the green pigment in plant cells.
Solution
Answer: 2.720 %
Concept: percent composition by mass
\[ \begin{align*} w(\mathrm{Mg})~\% &= w(\mathrm{Mg}) \times 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Mg})} {M_{\mathrm{r}}(\mathrm{chlorophyll})} \Biggl\} ~ \times 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Mg})} { \left [ 55 ~ A_{\mathrm{r}}{^{\circ}}(\mathrm{C}) + 72 ~ A_{\mathrm{r}}{^{\circ}}(\mathrm{H}) + A_{\mathrm{r}}{^{\circ}}(\mathrm{Mg}) + 4 ~ A_{\mathrm{r}}{^{\circ}}(\mathrm{N}) + 5 ~ A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) \right ] } \Biggl\} ~ \times 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{ 24.3\bar{1} } { \left [ \left ( 55\times 12.0\bar{1} \right ) + \left ( 72\times 1.0\bar{1} \right ) + 24.3\bar{1} + \left ( 4\times 14.0\bar{1} \right ) + \left ( 5\times 16.0\bar{0} \right ) \right ] } \Biggl\} ~ \times 100~\% \\[1.5ex] &= \Biggl\{ \dfrac{24.3\bar{1}} {893.6\bar{2}} \Biggl\} ~ \times 100~\% \\[1.5ex] &= 2.72\bar{0}39~\% \\[1.5ex] &= 2.720~\% \end{align*} \]
The mineral spodumene has the formula LiAlSi2O6. What is the mass (in g) of lithium in a 438 g sample?
Solution
Answer: 16.3 g
Concept: mass fraction
We can get the mass of an element in a sample with a known mass by taking the mass fraction of the element and multiplying by the mass of the sample.
\[ \begin{align*} m(\mathrm{Li}) &= w(\mathrm{Li}) ~ m(\mathrm{sample}) \\[1.5ex] &= \left ( \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Li})} {M_{\mathrm{r}}(\mathrm{LiAlSi_2O_6})} \right ) ~ m(\mathrm{sample}) \\[1.5ex] &= \left ( \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Li})} { \left [ A_{\mathrm{r}}{^{\circ}}(\mathrm{Li}) + A_{\mathrm{r}}{^{\circ}}(\mathrm{Al}) + 2~A_{\mathrm{r}}{^{\circ}}(\mathrm{Si}) + 6~A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) \right ] } \right ) ~ m(\mathrm{sample}) \\[1.5ex] &= \left ( \dfrac{6.9\bar{4}} { \left [ 6.9\bar{4} + 26.9\bar{8} + (2 \times 28.0\bar{9}) + (6 \times 16.0\bar{0}) \right ] } \right ) ~ \left ( 43\bar{8}~\mathrm{g} \right ) \\[1.5ex] &= \left ( \dfrac{6.9\bar{4}}{186.1\bar{0}}\right ) \left ( 43\bar{8}~\mathrm{g} \right ) \\[1.5ex] &= 16.\bar{3}33~\mathrm{g}\\[1.5ex] &= 16.3~\mathrm{g} \end{align*} \]
The mineral spodumene has the formula LiAlSi2O6. How many lithium atoms are present in a 101 g sample?
Solution
Answer: 3.27 × 1023
Concept: moles; the Avogadro constant
\[ \begin{align*} N(\mathrm{Li}) &= n(\mathrm{Li})~ N_{\mathrm{A}} \\[1.5ex] &= m(\mathrm{Li}) ~ M(\mathrm{Li})^{-1} ~ N_{\mathrm{A}} \\[1.5ex] &= w(\mathrm{Li}) ~ m(\mathrm{sample}) ~ M(\mathrm{Li})^{-1} ~ N_{\mathrm{A}} \\[1.5ex] &= \left ( \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Li})} {M_{\mathrm{r}}(\mathrm{LiAlSi_2O_6})} \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{Li})^{-1} ~ N_{\mathrm{A}} \\[1.5ex] &= \left ( \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Li})} { \left [ A_{\mathrm{r}}{^{\circ}}(\mathrm{Li}) + A_{\mathrm{r}}{^{\circ}}(\mathrm{Al}) + \left ( 2~A_{\mathrm{r}}{^{\circ}}(\mathrm{Si}) \right ) + \left ( 6~A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) \right ) \right ] } \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{Li})^{-1} ~ N_{\mathrm{A}} \\[1.5ex] &= \left ( \dfrac{6.94} { \left [ 6.9\bar{4} + 26.9\bar{8} + \left ( 2 \times 28.0\bar{9} \right ) + \left ( 6 \times 16.0\bar{0} \right ) \right ] } \right ) ~ \left ( \dfrac{10\bar{1}~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{6.9\bar{4}~\mathrm{g}}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}}{\mathrm{mol}} \right ) \\[1.5ex] &= \left ( \dfrac{6.9\bar{4}}{186.1\bar{0}}\right ) \left ( \dfrac{10\bar{1}~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{6.9\bar{4}~\mathrm{g}}} \right ) \left ( \dfrac{6.02\bar{2}\times 10^{23}}{\mathrm{mol}} \right ) \\[1.5ex] &= 3.2\bar{6}82\times 10^{23} \\[1.5ex] &= 3.27\times 10^{23} \end{align*} \]
Find the mass (in g as normalized scientific notation) of 100. atoms of iron.
Solution
Answer: 9.27 × 10–21 g
Concept: moles; the Avogadro constant
\[ \begin{align*} m(\mathrm{Fe}) &= n(\mathrm{Fe}) ~ M(\mathrm{Fe}) \\[1.5ex] &= N(\mathrm{Fe}) ~ N_{\mathrm{A}}{^{-1}} ~ M(\mathrm{Fe}) \\[1.5ex] &= 10\bar{0}.~\mathrm{Fe} ~ \left ( \dfrac{\mathrm{mol}}{6.02\bar{2}\times 10^{23}~\mathrm{Fe}} \right ) \left ( \dfrac{55.8\bar{5}~\mathrm{g}}{\mathrm{mol}} \right ) \\[1.5ex] &= 9.2\bar{7}43 \times 10^{-21}~\mathrm{g} \\[1.5ex] &= 9.27 \times 10^{-21}~\mathrm{g} \end{align*} \]
Analysis of a sample of a covalent compound showed that it contained 14.4 % hydrogen and 85.6 % carbon by mass. What is the empirical formula for the compound?
Solution
Answer: CH2
Concept: percent composition by mass; empirical formula
The empirical formula represents the simplest whole-number ratio of moles of each element in a compound. We will follow a three-step process to find this ratio from the given mass percentages.
Because percent composition is a ratio, it is independent of the total mass of the sample. To simplify the calculation, we can assume a convenient total mass. Assuming an exactly 100 g sample is the standard and most direct method, as it allows us to convert the percentages directly into grams (e.g., 14.4% of 100 g is exactly 14.4 g).
Find the moles of H in the sample:
\[ \begin{align*} w(\mathrm{H})~\% &= w(\mathrm{H}) \times 100~\% \\[1.5ex] &= m(\mathrm{H})~ m(\mathrm{sample})^{-1}~ \times 100~\% \\[1.5ex] &= n(\mathrm{H}) ~ M(\mathrm{H})~ m(\mathrm{sample})^{-1}~ \times 100~\% \longrightarrow \\[1.5ex] n(\mathrm{H}) &= \left ( \dfrac{w\left(\mathrm{H}\right)\%}{100~\%} \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{H})^{-1} \\[1.5ex] &= \left ( \dfrac{14.\bar{4}~\%}{100~\%}\right ) \left ( \dfrac{100~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{1.0\bar{1}~g}} \right ) \\[1.5ex] &= 14.\bar{2}57~\mathrm{mol~H} \end{align*} \]
Find the moles of C in the sample:
\[ \begin{align*} w(\mathrm{C})~\% &= w(\mathrm{C}) \times 100~\% \\[1.5ex] &= m(\mathrm{C})~ m(\mathrm{sample})^{-1}~ \times 100~\% \\[1.5ex] &= n(\mathrm{C}) ~ M(\mathrm{C})~ m(\mathrm{sample})^{-1}~ \times 100~\% \longrightarrow \\[1.5ex] n(\mathrm{C}) &= w(\mathrm{C}) ~ m(\mathrm{sample}) ~ M(\mathrm{C})^{-1} \\[1.5ex] &= \left ( \dfrac{w\left(\mathrm{C}\right)\%}{100~\%} \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{C})^{-1} \\[1.5ex] &= \left ( \dfrac{85.\bar{6}~\%}{100~\%}\right ) \left ( \dfrac{100~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{12.0\bar{1}~g}} \right ) \\[1.5ex] &= 7.1\bar{2}7~\mathrm{mol~C} \end{align*} \]
Find the mole ratio of H–to–C in the sample:
\[ \begin{align*} r(\mathrm{H,C}) &= n(\mathrm{H})~ n(\mathrm{C})^{-1}\\[1.5ex] &= \dfrac{14.\bar{2}57~\mathrm{mol~H}}{7.1\bar{2}7~\mathrm{mol~C}}\\[1.5ex] &= \dfrac{2.00~\mathrm{mol~H}}{1~\mathrm{mol~C}} \\[2ex] &\mathrm{CH_2} \end{align*} \]
Find the percent composition by mass of each element in Yttrium barium copper oxide (YBa2Cu3O7), a high-temperature superconductor compound.
Solution
Answer: Y: 13.34 %; Ba: 41.23 %; Cu: 28.62 %; O: 16.81 %
Concept: percent composition by mass
Find the relative molecular mass of YBa2Cu3O7.
\[ \begin{align*} M_{\mathrm{r}}(\mathrm{YBa_2Cu_3O_7}) &= A_{\mathrm{r}}{^{\circ}}(\mathrm{Y}) + \left ( 2~A_{\mathrm{r}}{^{\circ}}(\mathrm{Ba}) \right ) + \left ( 3~A_{\mathrm{r}}{^{\circ}}(\mathrm{Cu}) \right ) + \left ( 7~A_{\mathrm{r}}{^{\circ}}(\mathrm{O}) \right ) \\[1.5ex] &= 88.9\bar{1} + \left ( 2 \times 137.3\bar{3} \right ) + \left ( 3 \times 63.5\bar{5} \right ) + \left ( 7 \times 16.0\bar{0} \right ) \\[1.5ex] &= 666.2\bar{2}0 \\[1.5ex] &= 666.22 \end{align*} \]
Find the mass percent of each element in YBa2Cu3O7.
$$ \[\begin{align*} w(\mathrm{Y})~\% &= w(\mathrm{Y}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{A_{\mathrm{r}}{^{\circ}}(\mathrm{Y})}{M_{\mathrm{r}}(\mathrm{YBa_2Cu_3O_7})} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{88.9\bar{1}}{666.2\bar{2}0} \right ) \times 100~\% \\[1.5ex] &= 13.3\bar{4}54~\% \\[1.5ex] &= 13.34~\%~\mathrm{Y} \\[3ex] w(\mathrm{Ba})~\% &= w(\mathrm{Ba}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{2~A_{\mathrm{r}}{^{\circ}}(\mathrm{Ba})}{M_{\mathrm{r}}(\mathrm{YBa_2Cu_3O_7})} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{2\times 137.3\bar{3}}{666.2\bar{2}0} \right ) \times 100~\% \\[1.5ex] &= 41.2\bar{2}66~\% \\[1.5ex] &= 41.23~\%~\mathrm{Ba} \\[3ex] w(\mathrm{Cu})~\% &= w(\mathrm{Cu}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{3~A_{\mathrm{r}}{^{\circ}}(\mathrm{Cu})}{M_{\mathrm{r}}(\mathrm{YBa_2Cu_3O_7})} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{3\times 63.5\bar{5}}{666.2\bar{2}0} \right ) \times 100~\% \\[1.5ex] &= 28.6\bar{1}66~\% \\[1.5ex] &= 28.62~\%~\mathrm{Cu} \\[3ex] w(\mathrm{O})~\% &= w(\mathrm{O}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{7~A_{\mathrm{r}}{^{\circ}}(\mathrm{O})}{M_{\mathrm{r}}(\mathrm{YBa_2Cu_3O_7})} \right ) \times 100~\% \\[1.5ex] &= \left ( \dfrac{7\times 16.0\bar{0}}{666.2\bar{2}0} \right ) \times 100~\% \\[1.5ex] &= 16.8\bar{1}12~\% \\[1.5ex] &= 16.81~\%~\mathrm{O} \end{align*}\] $$
Hemoglobin is a protein that transports oxygen in mammals. Hemoglobin is 0.347 % Fe (by mass). Each hemoglobin molecule contains 4 Fe atoms. What is the molar mass (in g mol–1 as normalized scientific notation) of hemoglobin?
Solution
Answer: 6.44 × 104 g mol–1
Concept: percent composition by mass
\[ \begin{align*} w(\mathrm{Fe})~\% &= w(\mathrm{Fe}) \times 100~\% \\[1.5ex] &= \left ( \dfrac{4~A_{\mathrm{r}}{^{\circ}}(\mathrm{Fe})}{M_{\mathrm{r}}(\mathrm{hemoglobin})} \right ) \times 100~\% \longrightarrow \\[1.5ex] M_{\mathrm{r}}(\mathrm{hemoglobin}) &= \left ( \dfrac{4~A_{\mathrm{r}}{^{\circ}}(\mathrm{Fe})} {w(\mathrm{Fe})~\%} \right ) \times 100~\% \\[1.5ex] M(\mathrm{hemoglobin}) &= \left ( \dfrac{4~A_{\mathrm{r}}{^{\circ}}(\mathrm{Fe})} {w(\mathrm{Fe})~\%} \right ) ~ M_{\mathrm{u}} \times 100~\% \\[1.5ex] &= \left ( \dfrac{4~(55.8\bar{5})} {0.34\bar{7}~\%} \right ) \left ( \dfrac{\mathrm{g}}{\mathrm{mol}} \right ) \times 100~\% \\[1.5ex] &= 6.4\bar{3}80 \times 10^{4}~\mathrm{g~mol^{-1}} \\[1.5ex] &= 6.44 \times 10^{4}~\mathrm{g~mol^{-1}} \end{align*} \]
A compound that only contains carbon, hydrogen, and oxygen is 48.64 % C and 8.16 % H (by mass). What is the empirical formula of this substance?
Solution
Answer: C3H6O2
Concept: percent composition by mass; empirical formula
Assume an exact 100 g sample.
Find the moles of C, H, and O in an exact 100 g sample.
\[ \begin{align*} n(\mathrm{C}) &= m(\mathrm{C}) ~ M(\mathrm{C})^{-1} \\[1.5ex] &= w(\mathrm{C}) ~ m(\mathrm{sample}) ~ M(\mathrm{C})^{-1} \\[1.5ex] &= \left ( \dfrac{w(\mathrm{C})~\%}{100~\%} \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{C})^{-1} \\[1.5ex] &= \left ( \dfrac{48.6\bar{4}~\%~\mathrm{C}}{100~\%}\right ) \left ( \dfrac{100~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{12.0\bar{1}~g}} \right ) \\[1.5ex] &= 4.04\bar{9}95~\mathrm{mol~C}\\[3ex] n(\mathrm{H}) &= m(\mathrm{H}) ~ M(\mathrm{H})^{-1} \\[1.5ex] &= w(\mathrm{H}) ~ m(\mathrm{sample}) ~ M(\mathrm{H})^{-1} \\[1.5ex] &= \left ( \dfrac{w(\mathrm{H})~\%}{100~\%} \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{H})^{-1} \\[1.5ex] &= \left ( \dfrac{8.1\bar{6}~\%~\mathrm{H}}{100~\%}\right ) \left ( \dfrac{100~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{1.0\bar{1}~g}} \right ) \\[1.5ex] &= 8.07\bar{9}20~\mathrm{mol~H}\\[3ex] n(\mathrm{O}) &= m(\mathrm{O}) ~ M(\mathrm{O})^{-1} \\[1.5ex] &= w(\mathrm{O}) ~ m(\mathrm{sample}) ~ M(\mathrm{O})^{-1} \\[1.5ex] &= \left ( \dfrac{w(\mathrm{O})~\%}{100~\%} \right ) ~ m(\mathrm{sample}) ~ M(\mathrm{O})^{-1} \\[1.5ex] &= \left ( \dfrac{\left [ 100 - (48.6\bar{4} + 8.1\bar{6}) \right ]~\%~\mathrm{O}}{100~\%}\right ) \left ( \dfrac{100~\mathrm{g}}{} \right ) \left ( \dfrac{\mathrm{mol}}{\mathrm{16.0\bar{0}~g}} \right ) \\[1.5ex] &= 2.70\bar{0}00~\mathrm{mol~O}\\[3ex] \end{align*} \]
Find the mole ratio of C, H, and O to a smallest whole number ratio by dividing by the smallest mole number and multiplying by an integer (here the integer is 2).
\[ \begin{equation*} \begin{gathered} \mathrm{C}_{4.04\bar{9}95}\mathrm{H}_{8.07\bar{9}20}\mathrm{O}_{2.70\bar{0}00} \\[1.5ex] \mathrm{C}_{\frac{4.04\bar{9}9}{2.70\bar{0}00}}\mathrm{H}_{\frac{8.07\bar{9}2}{2.70\bar{0}00}}\mathrm{O}_{\frac{{2. 70\bar{0}00}}{2.70\bar{0}00}} \\[1.5ex] \mathrm{C}_{1.5}\mathrm{H}_{3}\mathrm{O}_{} \\[1.5ex] \mathrm{C}_{1.5\times 2}\mathrm{H}_{3\times 2}\mathrm{O}_{1\times 2} \\[4ex] \mathrm{C}_{3}\mathrm{H}_{6}\mathrm{O}_{2} \end{gathered} \end{equation*} \]