Chem.Academy
  • Home
  • Book
  • Notes
  • Skill Drills
  • Quick Reference
  • Periodic Table

Acids and Bases

Welcome! This online textbook is a living project.
Content is being added and refined weekly as we build a complete resource for General Chemistry I & II. Thank you for visiting!

  • Overview
  • Metric Prefixes
  • Significant Figures
  • Conversion Factors
  • Constants
  • Symbols
  • Equations
  • Acids and Bases
  • Isotopic Abundances
  • Stoichiometry Flowchart
  • Thermodynamic Data
  • Bond Properties
  • VSEPR Geometries
  • Atomic Orbitals
  • MO Diagrams
  • Phase Diagrams
  • Aqueous Solubility Rules
  • Aqueous Solubility Data
  • Properties of Aqueous Solutions
  • Standard Reduction Potentials

Contents

  • Definitions
  • Classifications
  • Dissociation Constants

Acids and Bases

Definitions

Venn diagram showing the relationship between three acid-base definitions: 
         Arrhenius acids and bases are a subset of Brønsted–Lowry acids and bases, 
         which in turn are a subset of Lewis acids and bases.


Arrhenius acid (green) – a substance that, when added to water, causes an increase in the molar concentration of hydronium ions ([H₃O⁺]) and a decrease in the molar concentration of hydroxide ions ([OH⁻]).

\[\begin{aligned} {\color{green}\mathrm{HA}}\mathrm{(aq)} + \mathrm{H_2O(l)} &\rightleftharpoons \mathrm{H_3O^+(aq)} + {\color{red}\mathrm{A^-}}\mathrm{(aq)} \end{aligned}\]

Arrhenius base (red) – a substance that, when added to water, causes an increase in the molar concentration of hydroxide ions ([OH⁻]) and a decrease in the molar concentration of hydronium ions ([H₃O⁺]).

\[\begin{aligned} \textrm{(by dissociation)} \quad \mathrm{NaOH}\mathrm{(s)} &\rightarrow \mathrm{Na^+(aq)} + {\color{red}\mathrm{OH^-}}\mathrm{(aq)} \\ \textrm{(by reaction)} \quad {\color{red}\mathrm{B}}\mathrm{(aq)} + \mathrm{H_2O(l)} &\rightleftharpoons \mathrm{OH^-(aq)} + {\color{green}\mathrm{HB^+}}\mathrm{(aq)} \end{aligned}\]


Brønsted-Lowry acid (green) – a molecular entity capable of donating a proton (hydron) to a base (a proton donor).

Brønsted-Lowry base (red) – a molecular entity capable of accepting a proton (hydron) from an acid (a proton acceptor).

A B-L reaction is a proton transfer. Water can act as either an acid or a base (water is amphoteric).

\[\begin{array}{ccccccc} {\color{green}\mathrm{HA}} & \!\!\!+\!\!\! & {\color{red}\mathrm{H_2O}} & \!\!\!\rightleftharpoons\!\!\! & {\color{green}\mathrm{H_3O^+}} & \!\!\!+\!\!\! & {\color{red}\mathrm{A^-}} \\ \small\text{B-L acid} & & \small\text{B-L base} & & \small\text{conj. acid} & & \small\text{conj. base} \end{array}\] \[\begin{array}{ccccccc} {\color{green}\mathrm{H_2O}} & \!\!\!+\!\!\! & {\color{red}\mathrm{B}} & \!\!\!\rightleftharpoons\!\!\! & {\color{green}\mathrm{HB^+}} & \!\!\!+\!\!\! & {\color{red}\mathrm{OH^-}} \\ \small\text{B-L acid} & & \small\text{B-L base} & & \small\text{conj. acid} & & \small\text{conj. base} \end{array}\]

The B-L theory also applies to non-aqueous systems:

\[\begin{array}{ccccc} {\color{green}\mathrm{HCl}}(\mathrm{g}) & \!\!\!+\!\!\! & {\color{red}\mathrm{NH_3}}(\mathrm{g}) & \!\!\!\rightleftharpoons\!\!\! & {\color{green}\mathrm{NH_4Cl}}(\mathrm{s}) \\ \small\text{B-L acid} & & \small\text{B-L base} & & \small\text{salt} \end{array}\]


Lewis acid (green) – a molecular entity that is an electron-pair acceptor.

Lewis base (red) – a molecular entity that is an electron-pair donor.

The Lewis theory is the most general acid-base theory because it defines reactions in terms of electron-pair transfer, allowing it to encompass reactions that do not involve protons.

\[\begin{array}{ccccc} {\color{green}\mathrm{BF_3}} & \!\!\!+\!\!\! & {\color{red}\mathrm{:NH_3}} & \!\!\!\rightarrow\!\!\! & \mathrm{F_3B{-}NH_3} \\ \small\text{Lewis acid} & & \small\text{Lewis base} & & \small\text{adduct} \end{array}\]

Here, the lone pair on nitrogen is donated to the electron-deficient boron atom.


Conjugate acid-base pairs

A deprotonated (−H+) acid results in a conjugate base. A protonated (+H+) base results in a conjugate acid.

\[{\color{green}\mathrm{HA}}\underset{+\mathrm{H}^+}{\overset{-\mathrm{H}^+}{\rightleftharpoons}} {\color{red}\mathrm{A^-}}\]

A protonated (+H+) base results in a conjugate acid. A deprotonated (−H+) acid results in a conjugate base.

\[{\color{red}\mathrm{B}} \underset{-\mathrm{H}^+}{\overset{+\mathrm{H}^+}{\rightleftharpoons}} {\color{green}\mathrm{HB^+}}\]

Classifications

Table 1: Some common acids and bases


Table 2: Common anions and their corresponding acids

Dissociation Constants

Notes

The acid dissociation constant, Ka, is the equilibrium constant for the ionization of an acid in water:

\[\mathrm{HA(aq)} + \mathrm{H_2O(l)}\rightleftharpoons \mathrm{H_3O^+(aq)} + \mathrm{A^-(aq)}\] \[K_{\mathrm{a}} = \dfrac{[\mathrm{H_3O^+}][\mathrm{A^-}]}{[\mathrm{HA}]}\]

This value is commonly expressed in logarithmic form as the pKa:

\[\mathrm{p}K_{\mathrm{a}} = -\log K_{\mathrm{a}}\]

Parent compound Type:

  • A: acid
  • B: base
  • Amp: amphiprotic

Entries listed as bases contain pKa and Ka values associated with their conjugate acid. For example, ammonia (NH3) is a base and the listed values correspond to the ammonium ion (NH4+), the conjugate acid as determined by

\[\mathrm{NH_3(aq)} + \mathrm{H_2O(l)} \rightleftharpoons \mathrm{OH^-(aq)} + \mathrm{NH_4^+(aq)}\]

Table 3: Dissociation constants for inorganic acids and bases


Table 4: Dissociation constants for organic acids and bases
 
 

© Copyright 2025